题 目:无限维理解下的深度学习理论与算法
内容简介:现有深度学习方法大多通过有限维的方式来对数据表示、网络架构等基本元素进行设计,然而,这些元素真正的内在表达却应为无限维。采用简化的有限维设计往往忽略算法各元素的本质无限维内涵,从而带来算法理论探索及应用扩展的局限。针对这一问题,本报告将尝试针对图像无限维表达、卷积核无限维表达、梯度场无限维表达等问题展开讨论,分别介绍研究团队在参数化卷积核,无限维神经表达,深度网络的类量子不确定性原理等深度学习基础理论与算法方面所作出的初步探索成果,并介绍基于其所延伸出一些典型示例应用。
报告人:孟德宇
报告人简介:西安交通大学教授,博士生导师,任大数据算法与分析技术国家工程实验室机器学习教研室负责人。发表论文百余篇,其中IEEE汇刊论文60余篇,计算机学会A类会议40篇,谷歌学术引用超过25000次。现任IEEE Trans. PAMI,Science China: Information Sciences等7个国内外期刊编委。目前主要研究聚焦于元学习、概率机器学习、可解释性神经网络等机器学习基础研究问题。
时 间:2023年11月9日(周四)下午15:00 始
地 点:腾讯会议:886-787-886
热烈欢迎广大师生参加!
3044澳门永利集团欢迎您
2023年11月7日